Assessing the Applicability of the GTR Nucleotide Substitution Model Through Simulations
نویسندگان
چکیده
The General Time Reversible (GTR) model of nucleotide substitution is at the core of many distance-based and character-based phylogeny inference methods. The procedure described by Waddell and Steel (1997), for estimating distances and instantaneous substitution rate matrices, R, under the GTR model, is known to be inapplicable under some conditions, ie, it leads to the inapplicability of the GTR model. Here, we simulate the evolution of DNA sequences along 12 trees characterized by different combinations of tree length, (non-)homogeneity of the substitution rate matrix R, and sequence length. We then evaluate both the frequency of the GTR model inapplicability for estimating distances and the accuracy of inferred alignments. Our results indicate that, inapplicability of the Waddel and Steel's procedure can be considered a real practical issue, and illustrate that the probability of this inapplicability is a function of substitution rates and sequence length.We also discuss the implications of our results on the current implementations of maximum likelihood and Bayesian methods.
منابع مشابه
Maximum likelihood estimation of phylogenetic trees is consistent when substitution rates vary according to the invariable sites plus gamma distribution.
Maximum likelihood estimation of phylogenetic trees from nucleotide sequences is completely consistent when nucleotide substitution is governed by the general time reversible (GTR) model with rates that vary over sites according to the invariable sites plus gamma (I + gamma) distribution.
متن کاملA non-linear optimization procedure to estimate distances and instantaneous substitution rate matrices under the GTR model
MOTIVATION The general-time-reversible (GTR) model is one of the most popular models of nucleotide substitution because it constitutes a good trade-off between mathematical tractability and biological reality. However, when it is applied for inferring evolutionary distances and/or instantaneous rate matrices, the GTR model seems more prone to inapplicability than more restrictive time-reversibl...
متن کاملHaplotype Block Partitioning and tagSNP Selection under the Perfect Phylogeny Model
Single Nucleotide Polymorphisms (SNPs) are the most usual form of polymorphism in human genome.Analyses of genetic variations have revealed that individual genomes share common SNP-haplotypes. Theparticular pattern of these common variations forms a block-like structure on human genome. In this work,we develop a new method based on the Perfect Phylogeny Model to identify haplo...
متن کاملEvaluation of Ancestral Sequence Reconstruction Methods to Infer Nonstationary Patterns of Nucleotide Substitution.
Inference of gene sequences in ancestral species has been widely used to test hypotheses concerning the process of molecular sequence evolution. However, the approach may produce spurious results, mainly because using the single best reconstruction while ignoring the suboptimal ones creates systematic biases. Here we implement methods to correct for such biases and use computer simulation to ev...
متن کاملTwo stationary nonhomogeneous Markov models of nucleotide sequence evolution.
The general Markov model (GMM) of nucleotide substitution does not assume the evolutionary process to be stationary, reversible, or homogeneous. The GMM can be simplified by assuming the evolutionary process to be stationary. A stationary GMM is appropriate for analyses of phylogenetic data sets that are compositionally homogeneous; a data set is considered to be compositionally homogeneous if ...
متن کامل